

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 8379-8382

Use of a solid-supported coupling reagent for a selective phosphitylation of the primary alcohol of N^2 -isobutyryl-2'-deoxy or 2'-O-methyl guanosine

Ivan Zlatev, Yukiko Kato,[†] Albert Meyer, Jean-Jacques Vasseur and François Morvan*

Laboratoire de Chimie Organique Biomoléculaire de Synthèse, Université Montpellier II, place E. Bataillon, 34095 Montpellier cedex 5, France

> Received 30 June 2006; revised 11 September 2006; accepted 15 September 2006 Available online 5 October 2006

This work is dedicated to Professor Jean-Louis Imbach for his 70th birthday

Abstract—We have developed a 5'-regioselective phosphitylation of 3',5'-OH-guanosine derivatives thanks to a solid-supported coupling reagent with either a standard or a bulky phosphine. A 5'-phosphitylation up to a 95% selectivity was obtained with a quantitative conversion of starting nucleoside. After oxidation into thionophosphotriester or phosphotriester by means of solid-supported oxidizers, the 5'-phosphorylated N^2 -*i*-Bu-2'-OMe guanosines were isolated in good yields (70–80%). © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Nucleoside 5'-phosphates and their analogs are commonly used as biologically active compounds¹ since nucleosidic drugs are active as their 5'-triphosphate derivatives. The first phosphorylation by kinases is often the most selective and hence the most limitative step. As well explained previously,² the common preparation of 5'-phosphorylated nucleosides based on protection/ deprotection strategy³ is time consuming (five steps) and costly, in particular, when the nucleoside is expensive. Other methods exist for the selective 5'-phosphorylation of nucleosides,^{4–9} but they present the main limitation that it is not possible to obtain a neutral compound. Thus for the synthesis of 5'-phosphorylated dimers or longer 5'-phosphorylated oligonucleotides it is required that the phosphate is protected as a phosphotriester. In order to synthesize 5'-phosphate dimers to test them as polymerase inhibitors, we developed a strategy to readily obtain the guanosine building block **I** (Fig. 1). For that purpose, N^2 -isobutyryl 2'-O-Me guanosine was selectively 5'-phosphitylated to give the

Figure 1. Selective synthesis of 5'-phosphorylated N^2 -isobutyryl-2'-O-methyl guanosine.

Keywords: Phosphitylation; Solid-supported reagent; Nucleotide; Phosphoramidite.

^{*} Corresponding author. Tel.: +33 467 144 961; fax: +33 467 042 029; e-mail: morvan@univ-montp2.fr

[†]Present address: Department of Medical Genome Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.

corresponding phosphitetriester, which was finally oxidized, keeping the 3'-hydroxyl free for a next coupling.

Theoretically, the 5'-hydroxyl being a primary alcohol, the phosphitylation occurs preferentially on it. Nevertheless since the phosphitylation of 3',5'-O-unprotected nucleosides by a phosphoramidite derivative activated with tetrazole in acetonitrile is fast, a low selectivity is usually obtained.² Hence some 3'-O-phosphitylation also occurs in a lower amount (<10%), which is mainly converted into the 3',5'-diphosphite nucleoside. In addition, during the course of the reaction, the amount of 5'-O-monophosphitylated nucleoside increases in comparison with the free nucleoside and it could then react to yield the 3',5'-O-diphosphite nucleoside. Furthermore, this latter side reaction is difficult to handle since an excess of phosphitylating reagent (1.3 M equiv) is usually added to counterbalance its hydrolysis due to traces of water.

We hypothesized that this side reaction could be minimized if a solid-supported reagent as coupling activator is used. Actually, the heterogeneous activation of the phosphoramidite decreases the reaction rate¹⁰ likely leading to a better regioselectivity of the more reactive primary hydroxyl group. In addition, a maximal regioselectivity should be obtained if the heterogeneous activator is used in combination with a bulky phosphitylating reagent such as bis(2-cyano-1,1-dimethylethyl)-*N*,*N*-diisopropylphosphoramidite.¹¹ Indeed, it has been recently shown that a high 5'-regioselectivity of 2'-deoxyribonucleosides could be reached using the bulky di-*tert*-butyldiethylphosphoramidite.¹²

Herein, we report the selective phosphitylation of N^2 isobutyryl 2'-O-Me guanosine using solid-supported pyridinium tosylate as a coupling reagent and either the standard bis(2-cyanoethyl)-N,N-diisopropylphosphoramidite¹³ **1** or the bulky bis(2-cyano-1,1-dimethylethyl)-N,N-diisopropylphosphoramidite **2** (Scheme 1).

To validate our hypothesis, we first studied the 5'-Ophosphitylation of less expensive, N^2 -isobutyryl-2'- deoxyguanosine using polyvinyl-pyridinium tosylate $(PVPtos)^{10}$ or tetrazole with phosphine 1 or 2.

The nucleoside was dissolved in dichloromethane/DMF (1:1, v/v) and dried overnight with 3 Å molecular sieve. The coupling agent PVPtos (10 M equiv) or tetrazole (2.5 M equiv) was then added followed by phosphine 1 or 2, added as a 0.3 M solution in CH_2Cl_2 in three parts (i.e., for 1: 0.60, 0.45, and 0.30 M equiv; for 2: 1.05, 0.30, 0.15 M equiv) at room temperature. The reaction progress was monitored by HPLC. The percentage of each phosphitylated species was calculated and is shown in Table 1 with the percentage of conversion of the starting dG^{i-Bu} nucleoside.

These data confirm that classic conditions using phosphine 1 and tetrazole led to a moderate 5'-selectivity. During the course of the reaction, a 84% selectivity was obtained when 83% of dG^{i-Bu} conversion was reached. Unfortunately, the addition of phosphine to drive the reaction up to 90% was damaging since only

Table 1. Regioselective phosphitylation of N^2 -isobutyryl-2'-deoxyguanosine with tetrazole or PVPtos as activator and phosphine 1 or 2

Entry	Phosphine activator	Equiv of phosphite	ph	Ratio osphite	of es (%)	Conversion (%) ^b
		(1 or 2) ^a	5'-	3'-	3′,5′-	
1	1 Tet.	0.60 (0.5)	76	14	10	46
		1.05 (0.93)	84	4	12	83
		1.35 (1.07)	70	3	27	90
2	2 Tet.	1.05 (0.55)	92	5	3	53
		1.35 (0.71)	91	5	4	68
		1.50 (1.02)	86	5	9	89
3	1 PVPtos	0.60 (0.32)	89	9	2	32
		1.05 (0.91)	91	6.5	2.5	90
		1.35 (1.01)	90	5	5	98
4	2 PVPtos	1.05 (0.45)	96	3	1	45
		1.35 (0.66)	96	2	2	65
		1.50 (0.93)	95	2	3	91

^a In the parenthesis, the effective equivalent of phosphitylating agent consumed.

^b Percentage of dG^{*i*-Bu} consumed.

Scheme 1. Selective 5'-phosphitylation of N^2 -isobutyryl-2'-deoxyguanosine.

70% of the desired compound **3** was formed with 27% of 3',5'-diphosphitylated nucleoside (Table 1, entry 1). Interestingly, the use of the bulky phosphine **2** greatly improved the selectivity with 86% of 5'-phosphitylated nucleoside **4** formed and only 9% of diphosphitylated one, keeping a similar conversion (89%) of dG^{*i*-Bu} (Table 1, entry 2).

The use of a heterogeneous activation by means of PVPtos gave a high 5'-regioselectivity with 90% of the desired compound **3** formed with phosphine **1** with almost quantitative conversion of starting dG^{'-Bu} (Table 1, entry 3). As previously, the phosphitylation by means of phosphine **2** improved the regioselectivity to 95% (Table 1, entry 4). For the both phosphines, only few amounts of 3',5'-diphosphitylated (3–5%) and 3'-phosphitylated (2–5%) nucleosides were formed (Table 1, entries 3 and 4). These results are extremely interesting since the heterogeneous activation allowed a high 5'regioselectivity (90–95%) in combination with a high conversion (98–91%) of the starting nucleoside.

These data clearly demonstrate that (1) with a standard tetrazole activation, the use of a bulky phosphine increases the selectivity from 70% to 86% with 90% of conversion, (2) the use of a heterogeneous activation by means of a solid-supported activator improved the selectivity (70–90%) with a quasi-quantitative conversion of the starting dG^{*i*-Bu}, (3) the combination of a heterogeneous activation and a bulky phosphine gave the highest selectivity (95%).

The 5'-phosphitylation of N^2 -isobutyryl-2'-O-methyl guanosine was then performed by means of PVPtos as an activator with either phosphine **1** or **2** added, as a 0.3 M solution in CH₂Cl₂, in three times 0.60, 0.45, and 0.30 M equiv (Scheme 2 and Table 2). Between each addition, the progress of the reaction was monitored by HPLC. No significant difference of reactivity was observed between both phosphines.

The data clearly demonstrated a high selectivity of 5'phosphitylation 88% and 95% using phosphines 1 and 2, respectively, with an almost quantitative conversion of starting material (96% and 100%). This latter point is particularly important because usually when the conversion increases the selectivity decreases.²

After completion of the phosphitylation, the mixture was filtered off to remove the solid-supported coupling

Table 2. Regioselective phosphitylation of N^2 -isobutyryl-2'-O-methylguanosine with PVPtos as activator and phosphine 1 or 2

Phosphine	Equiv of phosphite	Rati	o of pho (%)	Conversion (%) ^b	
	(1 or 2) ^a	5'-	3'-	3',5'-	
1	0.6 (0.48)	95	2.5	2.5	47
	1.05 (0.89)	93	1.5	5.5	85
	1.35 (1.07)	88	0	12	96
2	0.6 (0.52)	98	1.4	0.6	52
	1.05 (0.88)	97	1	2	87
	1.35 (1.03)	95	0	5	100

^a In the parenthesis, the effective equivalent of phosphitylating agent consumed.

^b Percentage of 2'-O-Me-G^{*i*-Bu} consumed.

agent and the resin was washed with CH₂Cl₂. After concentration to half-volume, the phosphite triester linkage was sulfurized into thionophosphorotriester using solidsupported tetrathionate.¹⁰ The conversion of 5 into 7 was completed after an overnight treatment although it took 3 days for the conversion of 6 into 8 (HPLC monitoring). This latter result could be explained by the higher steric hindrance due to the four extra methyl groups in β , β' of the phosphorous atom. After filtration and evaporation, the desired compounds were isolated pure by flash chromatography on silica gel with a good yield (7: 70% and 8: 80%). Alternatively, compound 5 was oxidized into phosphotriester by means of the solid-supported periodate¹⁰ within 2 h and was isolated after chromatography (75%). At this stage, the 5'-O-thionophosphotriester or 5'-O-phosphotriester nucleosides could be either deprotected by ammonia to afford the corresponding 5'-O-mono(thio)phosphate nucleosides or could be used for a further coupling to afford 5'-(thio)phosphorylated dimers. Along this line we used 7 and 8 for a coupling with 5'-H-phosphonate N,3'-O-acyl nucleosides to afford dimers. This work will be reported elsewhere.

In conclusion, we have developed a highly regioselective phosphitylation of N-protected guanosine derivatives using a heterogeneous activation by means of a solidsupported activator (PVPtos). Maximal regioselectivity was obtained using a bulky phosphine in combination. Then, their conversion into (oxo and thiono) phosphotriesters was also performed with solid-supported oxidizers. The great advantage in using solid-supported reagents is that all the work-ups and purifications are

Scheme 2. Selective 5'-phosphitylation of N^2 -isobutyryl 2'-O-methyl guanosine and its sulfurization.

easier since a simple filtration stops the reaction and removes the excess of reagents. Furthermore, these solid-supported reagents are cheap and easily reusable.

We expect that this method would be extended to the preparation of other 5'-phosphate nucleoside analogs.

Acknowledgments

This work was supported by grant from the ANRS. I.Z. thanks the 'Ministère National de la Recherche et de la Technologie' for the award of a research studentship.

Supplementary data

Supplementary data (the protocols for the synthesis of **2** and for phosphitylation and oxidation to afford **7** and **8** with NMR and MS data) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2006.09.086.

References and notes

- 1. Slotin, L. A. Synthesis 1977, 11, 737-752.
- 2. Graham, S. M. J.; Pope, S. C. Org. Lett. 1999, 1, 733-736.
- 3. Ludwig, J.; Eckstein, F. J. Org. Chem. 1989, 54, 631-635.
- 4. Hes, J.; Mertes, M. P. J. Org. Chem. 1974, 39, 3767-3769.
- Imai, K.; Fujii, S.; Takanohashi, K.; Furukawa, Y.; Masuda, T.; Honjo, M. J. Org. Chem. 1969, 34, 1547– 1550.
- Sowa, T.; Ouchi, S. Bull. Chem. Soc. Jpn. 1975, 48, 2084– 2090.
- Yoshikawa, M.; Kato, T.; Takenishi, T. Tetrahedron Lett. 1967, 8, 5065–5068.
- Ahmadibeni, Y.; Parang, K. J. Org. Chem. 2005, 70, 1100– 1103.
- Ahmadibeni, Y.; Parang, K. Org. Lett. 2005, 7, 1955– 1958.
- Dueymes, C.; Schonberger, A.; Adamo, I.; Navarro, A. E.; Meyer, A.; Lange, M.; Imbach, J. L.; Link, F.; Morvan, F.; Vasseur, J. J. *Org. Lett.* **2005**, *7*, 3485–3488.
- 11. Marugg, J. E.; Dreef, C. E.; Van der Marel, G. A.; Van Boom, J. H. Recl. Trav. Chim. Pays-Bas 1984, 103, 97–98.
- Kato, U.; Oka, N.; Wada, T. Tetrahedron Lett. 2006, 47, 2501–2505.
- 13. Uhlmann, E.; Engels, J. Tetrahedron Lett. 1986, 27, 1023– 1026.